\qquad

C.U.SHAH UNIVERSITY

Wadhwan City

Subject Code : : 5SC02MTC1
Summer Examination-2014
Date: 9/06/2014
Subject NameDifferential Geometry
Branch/Semester:- M.Sc(Mathematics) /II
Time:02:00 To 5:00
Examination: Regular
Instructions:-
(1) Attempt all Questions of both sections in same answer book / Supplementary
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places
(5) Assume suitable \& Perfect data if needed

SECTION-I

Q-1 a) Prove that $\bar{t} \cdot \bar{b}=-k \tau$.
b) Find tangent plane for the surface $x y z=a^{3}$ where a is constant.
c) Define spherical indicatrix of tangent.
d) If \bar{r} is a plane curve with no where vanishing curvature then what is the value of τ.

Q-2 a) Find curvature and torsion of the curvel $f=1 /\left(x-\sin u, 1-\cos u_{3} 3\right)$.
b) Let \bar{r} be an arc length parameterized cuive Find tangent, principal normal, binormal, curvature and torsion of the loçus of centre of the locus of centre of spherical curvature of \bar{r}.
c) Prove that a curve is helix if ratio of curvature and torsion is constant.

Q-2 a) Let $\bar{r}(t)$ be a curve and $\dot{r}(t) \neq 0$ for all t then prove that curvature
$k=\frac{|\dot{r} \times \vec{n}|}{|\dot{r}|^{3}}$
b) State and prove fundamental theorem of curve theory.
c) Define involutes. Find tangent, principal normal and curvature of an Involutes of a given curve.

Q-3 a) Prove that the envelope of the family of paraboloids
$x^{2}+y^{2}=4 a(z-a)$ is $x^{2}+y^{2}=z^{2}$.
b) Prove that the surface $x y=(z-c)^{2}$ is a developable.
c) Find first and second fundamental magnitudes of surface $\bar{r}=(u \cos \phi, u \sin \phi f(\phi))$.

OR

Q-3 a) Derive necessary condition for surface $z=f(x, y)$ representing a developable surface.
b) Find edge of regression of the envelop of the family of planes $x \sin \theta-y \cos \theta+z \theta=a \theta$ where θ is parameter.
c) Show that sum of square of intercepts on the co - ordinate axis made by the tangent plane to the surface $x^{2 / 3}+y^{2 / 3}+z^{2 / 3}=a^{2 / 3}$.

Page $\mathbf{1}$ of $\mathbf{2}$

SECTION-II

Q-4 a) Write equation for principal direction.
b) Define flat point.
c) Define lines of curvature.
d) What is the value of k_{n} for asymptotic line?

Q-5 a) If k_{a}, k_{b} be the principal curvature and k_{n} denote the normal curvature at a point on the surface and Ψ be the angle between the direction (dur dv)
and the principal direction $v=$ constant
$k_{n}=k_{a} \cos ^{2} \Psi+k_{b} \sin ^{2} \Psi$.
b) If k is a curvature of plane section of a surface $S: \bar{r}=\bar{r}(u, v)$ and k_{n} is a curvature of a normal section at the same point. Let θ be an angle between principal normal to the curve obtain by plane section at a point P and \bar{n} then $k_{n}=k \cos \theta$.
c) Check whether the parametric curves for surface
$\bar{r}=\left(u \cos \varnothing, u \sin \varnothing, \cos ^{2} u\right)$ are conjugate or not.

OR

Q-5 a) Prove that equation for principal curvature is
$H^{2} k^{2}-(E N-2 F M+G L) k+T^{2}=0$. Also write formula for Gaussian curvature.
b) The necessary and sufficient condition for lines of curvature to be parametric curve is $F=0=M$.
c) Find asymptotic lines and its torsion for the surface generated by tangents of a twisted curve.
Q-6 a) Find Christoffel symbols of the first kind for the surface
$\bar{r}=(u \cos \phi, u \sin \phi, f(u))$.
b) Prove that all points on the surface $\vec{r}=\left(\alpha \cos \theta \cos \varphi_{,} a \cos \theta \sin \varphi_{,} a \sin \theta\right)$ are elliptic points.
c) The geodesic torsion τ_{z} at a point P on a curve $C i s \frac{1}{2}\left(k_{a}-k_{z}\right) \sin 2 \varphi$, where φ is the angle between geodesic tangent and $v=$ constant.

OR

Q-6 a) Prove that Christoffel symbol of first kind $\Gamma_{\mathrm{jjk}}=\frac{i}{2}\left(\frac{\partial_{u_{j k}}}{\partial u^{i}}+\frac{\partial g_{h i}}{\partial u^{i}}-\frac{\partial_{s_{i j}}}{\partial u^{i}}\right)$.
b) If k_{g} denote the geodesic curvature, prove that $k_{g}=\left[\bar{N} \bar{r}^{\prime \prime}\right]$
c) Let τ and τ_{g} denote the usual torsion and geodesic torsion at a point P on a curve C on the surface and ω denote the positive angle between \bar{n} and surface normal \bar{N}, prove that $\tau_{g}=\tau+\frac{\Delta \nu}{d s}$.

