Exam Seat No:_

Enrollment No:_____

Wadhwan City

Subject Code :: 5SC02MTC1 Summer Examination-2014 Date: 9/			ate: 9/06/2014	06/2014	
Subject NameDifferential Geometry Branch/Semester:- M.Sc(Mathematics) /II Time:02:0 Examination: Regular) To 5:00	
Instruc (1) Atte (2) Use (3) Inst (4)Drav (5) Ass	empt of Pr cruction w nea	:- all Questions of both sections in same answer book / Supplementary rogrammable calculator & any other electronic instrument is prohibited. ons written on main answer Book are strictly to be obeyed. at diagrams & figures (If necessary) at right places suitable & Perfect data if needed			
SECTION-I					
Q-1	a)	Prove that $\overline{t'} \cdot \overline{b'} = -k\tau$.	(0)2)	
	b)	Find tangent plane for the surface $xyz = a^3$ where <i>a</i> is constant.	(0)2)	
	c)	Define spherical indicatrix of tangent.	(0)2)	
	d)	If \overline{r} is a plane curve with no where vanishing curvature then what is value of τ .	is the (0)1)	
Q-2	a)	Find curvature and torsion of the curve $r^{ \underline{M} }(u - sinu, 1 - cosu, 3)$	3) . (C)5)	
	b)	Let \overline{r} be an arc length parameterized curve. Find tangent, principal normal, binormal, curvature and torsion of the locus of centre of the locus of centre of spherical curvature of \overline{r} .	e (0)5)	
	c)	Prove that a curve is helix if ratio of curvature and torsion is consta OR	ant. (O)4)	
Q-2	a) <u>k</u> =	Let $\bar{r}(t)$ be a curve and $\dot{r}(t) \neq 0$ for all t then prove that curvature = $\frac{ \dot{r} \times \ddot{r} }{ \dot{r} ^3}$	e (0)5)	
	b)	State and prove fundamental theorem of curve theory.	(0)5)	
	c)	Define involutes. Find tangent, principal normal and curvature of a Involutes of a given curve.	ın (0)4)	
Q-3	a)	Prove that the envelope of the family of paraboloids $x^2 + y^2 = 4a (z - a)$ is $x^2 + y^2 = z^2$.	(0)5)	
	b)	Prove that the surface $xy = (z - c)^2$ is a developable.	(0)5)	
	c)	Find first and second fundamental magnitudes of surface $\bar{r} = (u \cos \phi, u \sin \phi, f(\phi))$.	(0)4)	
		OR			
Q-3	a)	Derive necessary condition for surface $z = f(x, y)$ representing a developable surface.	(0)5)	
	b)	Find edge of regression of the envelop of the family of planes $x \sin \theta - y \cos \theta + z\theta = a\theta$ where θ is parameter.	(0)5)	
	c)	Show that sum of square of intercepts on the co – ordinate axis mathematicate the tangent plane to the surface $x^{2/3} + y^{2/3} + z^{2/3} = \alpha^{2/3}$.	de by (0)4)	

9

SECTION-II

Q-4	a) Write equation for principal direction.	(02)				
	b) Define flat point.	(02)				
	c) Define lines of curvature.	(02)				
~ ~	d) What is the value of \mathcal{K}_m for asymptotic line?	(01)				
Q-5	a) If k_{a} , k_{b} be the principal curvature and k_{n} denote the normal curvature at	(05)				
	a point on the surface and Ψ be the angle between the direction (du, dv)					
	and the principal direction $\mathbf{v} = \text{constant}$					
	$\mathbf{k}_{n} = \mathbf{k}_{a} \cos^{2} \Psi + \mathbf{k}_{b} \sin^{2} \Psi.$					
	b) If k is a curvature of plane section of a surface $S : \bar{r} = \bar{r}(u, v)$ and k_n is a curvature of a normal section at the same point. Let θ be an angle between principal normal to the curve obtain by plane section at a point P and \bar{n} then $k_n = k \cos \theta$.	(05)				
	c) Check whether the parametric curves for surface	(04)				
	$\bar{\mathbf{r}} = (\mathbf{u} \cos \theta, \mathbf{u} \sin \theta, \cos^2 \mathbf{u})$ are conjugate or not.					
0-5	a) Prove that equation for principal curvature is	(05)				
Q-5	How that equation for principal curvature is $H^2k^2 - (EN - 2FM + GL)k + T^2 = 0$. Also write formula for	(05)				
	 b) The necessary and sufficient condition for lines of curvature to be parametric curve is F = 0 = M. 	(05)				
	c) Find asymptotic lines and its torsion for the surface generated by tangents of a twisted curve.	(04)				
Q-6	a) Find Christoffel symbols of the first kind for the surface $\bar{r} = (u \cos \phi, u \sin \phi, f(u)).$	(05)				
	b) Prove that all points on the surface $\vec{r} = (\alpha \cos \theta \cos \varphi, \alpha \cos \theta \sin \varphi, \alpha \sin \theta)$ are elliptic points.	(05)				
	c) The geodesic torsion τ_{-} at a point P on a curve C is $\frac{1}{2}(k_{-} - k_{*}) \sin 2\varphi$.	(04)				
	where φ is the angle between geodesic tangent and $\psi = \text{constant}$.					
	OR					
Q-6	a) Prove that Christoffel symbol of first kind	(05)				
	$\Gamma_{ijk} = \frac{1}{2} \left(\frac{\partial \omega_{jk}}{\partial u^i} + \frac{\partial g_{kl}}{\partial u^j} - \frac{\partial \omega_{ij}}{\partial u^k} \right).$					
	b) If k_g denote the geodesic curvature, prove that $k_g = [\bar{N}\bar{r}'\bar{r}']$	(05)				
	c) Let τ and τ_g denote the usual torsion and geodesic torsion at a point P on	(04)				
	a curve C on the surface and ω denote the positive angle between \overline{n} and					
	surface normal \overline{N} , prove that $\tau_g = \tau + \frac{d\omega}{ds}$.					
 ******9***14****S						